South Texas 2 #### **Initiating Events** Significance: Dec 28, 2002 Identified By: NRC Item Type: FIN Finding Licensee was not Monitoring or Addressing Declining Performance in Circulating Water System, Resulting in Catastrophic Pump **Failure and Plant Trip** A finding was identified for PI&R selected issue followup. The licensee was not adequately monitoring the declining performance of the circulating water system and treated problems with this system symptomatically rather than finding the cause. Several near-miss failures were experienced which could have resulted in plant trips. Failing to assess the cause of system problems contributed to a pump discharge valve becoming separated from the operator and slamming shut, catastrophic failure of the pump, and a plant trip. The safety significance associated with this issue was very low because it resulted in a manual plant trip with all safety-related equipment available to provide mitigation capability. The issue affected the performance objectives of the initiating events cornerstone for design control, and screened as Green during a Phase 1 SDP evaluation. Inspection Report# : 2002005(pdf) Significance: Jul 07, 2002 Identified By: NRC Item Type: FIN Finding Licensee Did Not Align Safety-related Instrumentation to Diverse Power Sources, Contributing to a Reactor Trip When an Inverter **Fuse Blew** On July 7, 2002, power was lost to the Train D instrumentation channel when the associated inverter blew a fuse. Because it was the licensee's practice to operate with all four controlling steam generator water level channels powered from that channel, the level instruments all failed low, causing the control system to increase feedwater flow to maximum. Operators were unable to gain manual control of four channels fast enough to control level and the unit tripped on high steam generator water level. The inspectors concluded that the licensee had not maintained an operating equipment lineup that would minimize events that upset plant stability and challenged safety functions. This performance deficiency was considered to be of more than minor significance because it affected the performance objective of the initiating events cornerstone by increasing the likelihood of a plant trip or transient. The issue was screened as Green using Phase 1 of the Significance **Determination Process.** Inspection Report# : 2002004(pdf) **Mitigating Systems** Dec 28, 2002 Identified By: NRC Item Type: NCV NonCited Violation Noncited Violation for Improper Design Control due to Undersized Overload Heaters Being installed in SG PORVs During Breaker The licensee did not properly control or review vendor design work when upgrading safety related 480V motor control center breaker units. As a result, the breakers for the hydraulic pumps for Steam Generator Power Operated Relief Valves 1B, 2B and 2C had undersized overload heaters installed, such that the valves would not have functioned as designed during periods of prolonged use or under degraded voltage conditions. Failure to assure that the design change for installing replacement 480V breaker units satisfied design requirements was a violation of 10 CFR 50, Appendix B, Criterion III, "Design Control." This violation is being treated as a noncited violation (NCV), consistent with Section VI.A of the Enforcement Policy. The safety significance of this issue was determined to be very low safety significance since this issue screened as Green during a Phase 1 significance determination process (SDP) assessment. The issue was considered more than minor because it affected the mitigating system cornerstone objective for design control and plant modifications by affecting the reliability of a system that responds to initiating events to prevent undesirable consequences Inspection Report# : 2002005(pdf) # **Barrier Integrity** Dec 21, 2002 Identified By: NRC Item Type: NCV NonCited Violation **Steam Generator Replacement** The South Texas Project Unit 2 steam generator replacement project was inspected utilizing the guidance in Inspection Procedure 50001, "Steam Generator Replacement Inspection," in a series of three inspection reports (50-498;499/02-07, 02-08, and 02-09). These inspections covered design and planning, steam generator removal and replacement, and postinstallation verification and testing. The inspections were conducted by resident and region-based engineering and plant support inspectors. The steam generator replacement outage was well planned and executed. The attention to lessons learned from the previous steam generator replacement outage were very effective in preventing recurrence of problems. Plant conditions were carefully controlled to minimize risk during construction activities. Inspection Report# : 2002009(pdf) Aug 29, 2002 Identified By: NRC Item Type: NCV NonCited Violation Failure to Follow a Procedure to Update AFD Computer Constants as Required by TS 6.8.1 and Reg. Guide 1.33 Instrumentation and controls technicians did not ensure that computer constants needed to calculate axial flux difference were updated during calibrations of the nuclear instruments as required by the calibration procedures. The plant computer was the only method used to calculate core axial flux difference, and to alarm if limits were approached. This failure to follow procedures was a non-cited violation of Technical Specification 6.8.1 and Regulatory Guide 1.33. The axial flux difference function was still operable with the old constants not properly updated for two channels, since the computer constants had changed by a small amount. However, this issue was considered to be more than minor because, if left uncorrected, it would be of greater safety concern because instrument inaccuracies could increase over time as the core burned up and detectors aged. The error affected operators' ability to maintain reactor power distribution within limits in order to protect the fuel clad barrier. This issue screened as a Green issue using Phase 1 of the Significance Determination Process because only the fuel clad barrier was potentially affected. Inspection Report# : 2002004(pdf) ## **Emergency Preparedness** ## **Occupational Radiation Safety** #### **Public Radiation Safety** # **Physical Protection** #### **Miscellaneous** Last modified: March 25, 2003